Users Manual for MINI2440

copyright@2007-2008

Table of Contents

1.	. Introduction to MINI2440 development board	6
	1.1 Brief introduction	6
	1.1.1 physical appearance of MINI2440	6
	1.1.2 Hardware Features	6
	1.1.3 CD Contents	8
	1.2 Hardware Resources	9
	1.2.1 Address Space Layout and Chip Selection signal definition.	
	1.2.2 Jumpers	
	1.2.3 Interfaces	
	1 3 Linux Features	11
	1 4 WindowsCE Features	12
2	Operating Instruction	13
	2.1 Settings and Connection on the Board	13
	2.1 Selecting Boot Mode	13
	2.1.1 Selecting Determined	14
	2.1.2 Connecting Interneces	11
	2.2 BIOS Functions and Operating Instruction	17
	2.2 Dros 1 unctions and operating instruction	17
	2.2.1 Entering DIOS mode	
	2.2.2 Installing 0.5D Driver	1)
	2.2.5 Tunction Menu	
	2.2.4 Sub-menu I unctions	20
	2.2.5 Setting the Linux boot parameters	
	2.3 1 Downloading and Running Test Program	
	2.3.1 Dowinoading and Running Test Hogram.	
	2.5.2 Templetal Resource Testings	
	2.4 1 Diaving MD2 files	
	2.4.1 Flaying MF 5 mes	
	2.4.2 Adoluting fulling programs	
	2.4.5 Using U-disk/mobile disk	
	2.4.4 Using SD card	
	2.4.5 Using USB Camera	40
	2.4.0 Serial Port Intercommunication	
	2.4.7 Controlling LEDS	
	2.4.8 Testing Buttons	
	2.4.9 Testing the serial ports 2 and 5	
	2.4.10 Testing the buzzer	
	2.4.11 Testing I2C Storage Device	
	2.4.12 Visiting BBS via Teinet	
	2.4.13 Visiting Internet	
	2.4.14 Setting up MAC address	
	2.4.15 Remotely Visiting the Development Board via Telnet	61
	2.4.16 Transmitting Files via FTP	61
	2.4.1 / Mounting and Using NFS (Network Filesystem)	
	2.4.18 Setting and Saving RTC Time	
	2.4.19 Saving Data to the Flash when Power Fails	
	2.4.20 Setting Self-running Programs	

2.4.21 Using Commands to Capture the Screen	
2.5 WinCE Functions and Peripheral Resources Testing	
2.5.1 Testing LED.	
2.5.2 Rotating the Screen	
2.5.3 Testing Serial Port Communication	
2.5.4 Using U-disk	
2.5.5 Using SD/MMC Card	
2.5.6 Playing mp3 with Windows Media Player	
2.5.7 Playing Mpeg4 files with Superplayer	71
2.5.8 Testing Ethernet Function	71
2.5.9 Visiting the board via telnet	73
2.5.10 Transmitting files to the board via FTP	73
2.5.11 Testing web server	74
2.5.12 Calibrating the Touch Screen	75
2.5.13 Using ActiveSync for USB Synchronous Communication	76
2.5.14 Testing Wifi	77
2.6 Using H-JTAG to burn BIOS	80
2.6.1 Introduction to H-JTAG	80
2.6.2 Installing and Setting H-JTAG	80
2.6.3 Setting the Flash Model Number and Burning BIOS	
3. Backing up and Installing/Updating the System	
3.1 Backing up and Restoring the system	
3.1.1 Backing up the system	
3.1.2 Restoring System with the Backup File	
3.2 Installing Linux System	
3.2.1 Partitioning Nand Flash	
3.2.2 Installing bootloader	
3.2.3 Installing Linux Kernel	
3.2.4 Installing Filesystem	
3.3 Installing wince US	
3.3.1 Partitioning	109
2.2.2 Installing Boolloader	
2.2.4 Installing WinCE Karnal Imaga	
4. Integrated Development Environment	
4. Integrated Development Environment	
4.1 Creating a Project	
4.1.1 Creating a Hojeet	
4.2 Debugging with H-ITAG	
4.2.1 Configuring AXD Debugger for H-ITAG	133
4 2 2 H-ITAG Debugging in ADS1 2 Environment	135
4.3 Compiling and Burning the 2440test Program	130
4 3 1 Compiling and Debugging 2440test	136
4 3 2 Downloading the 2440test program via USB	141
4 3 3 Burning 2440test Program to Nand Flash	
4 4 Compiling and Burning uCos2	143
4 4 1 Compiling uCos2	148
4.4.2 Downloading uCos2 to SDRAM	150

	4.4.3 Burning uCos2 to the Nand Flash	153
5.	. Building Linux Development Environment	156
	5.1 Building Development Environment Based on Redhat Linux 9.0	156
	5.1.1 Installing Redhat 9.0	156
	5.1.2 Building Cross Compiling Environment	168
	5.1.3 Configuring NFS Service	170
	5.1.4 Booting System via NFS	172
	5.1.5 Configuring FTP Service on the PC	174
	5.1.6 Configuring telnet Service on the PC	174
	5.1.7 Creating New User in Redhat	175
6.	. Embedded Linux Development	177
	6.1 Hello, World!	177
	6.1.1 Source Code	177
	6.1.2 Compiling Hello, World	177
	6.1.3 Downloading the "Hello, World to the Object Board"	177
	6.2 Embedded Linux Development	180
	6.2.1 LED Test Program	180
	6.2.2 Testing Buttons	181
	6.2.3 UDP Network Programming	183
	6.2.4 Calling Math Function Library	188
	6.2.5 Thread Programming	189
	6.2.6 Pipe Application Programming	191
	6.2.7 "Hello, World" in C++	195
	6.3 A Simple Embedded Linux Driver Module	196
	6.3.1 "Hello, Module" Source Code	196
	6.3.2 Adding the "Hello, Module" Program into the kernel code tree and Compiling it	197
	6.3.3 Downloading & Running the "Hello, Module" Program	200
	6.4 Simple Linux Driver Examples	201
	6.4.1 LED Driver	201
	6.4.2 Button Driver	205
	6.5 Porting Embedded Linux Programs	210
	6.5.1 Porting the MP3 player "madplay"	210
7.	. Configuring and Compiling Common Boot Loaders	222
	7.1 Configuring and Compiling vivi	222
	7.1.1 Compiling vivi Using Default Configurations	222
	7.1.2 Making vivi boot from Nor Flash	225
	7.2 Configuring and Compiling U-boot	225
	7.2.1 Configuring and Compiling U-boot	226
	7.2.2 Burning U-boot to the development board	227
8.	. Configuring and Compiling Linux Kernel	230
	8.1 Compiling the kernel with default configuration file	230
	8.1.1 Compiling the kernel	230
	8.1.2 Location of Linux Drivers	233
	8.2 Customizing Linux Kernel	234
	8.2.1 Configuring CPU options	234
	8.2.2 Configuring Driver support for LCDs	236
	8.2.3 Configuring Touch Screen	239
	8.2.4 Configuring USB mouse and keyboard	240

8.2.5 Configuring Support for U-disk	241
8.2.6 Configuring USB Cameras	243
8.2.7 Configuring driver for the CS8900 network card	245
8.2.8 Configuring Sound Card Driver	249
8.2.9 Configuring SD/MMC card Driver	252
8.2.10 Configuring LED and Button Drivers	252
8.2.11 Configuring Serial Port Driver	253
8.2.12 Configuring RTC Driver	254
8.2.13 Configuring yaffs filesystem support	254
8.2.14 Configuring EXT2/VFAT/NFS Filesystems	256
8.3 Making yaffs Root Filesystem	259
9. WinCE Development	
9.1 Development Environment based on WinCE5.0	261
9.1.1 Installing Platform Builder 5.0 (the 2007 latest patch included)	261
9.1.2 Importing and installing BSP	274
9.1.3 Installing wireless network card driver	277
9.1.4 Example for Compiling Kernel Project	280
9.1.5 Exporting SDK	282
9.1.6 Installing Embedded Visual C++ (EVC)	
9.1.7 Installing EVC Patch and SDK	295
9.1.8 Customizing WinCE Kernel	304
9.2 Synchronous Communication with PC	318
9.2.1 Installing ActiveSync	318
9.2.2 Installing USB Driver for Synchronous Communication	323
9.2.3 Copying files with ActiveSync	324
9.2.4 Using ActiveSync for Communication and Screen Shooting	327
9.2.5 Remote Registry Editing	334
9.3 Creating "Hello, World" Program in EVC	335
9.4 Creating VS2005/2008 Application	
9.4.1 Creating Project	
9.4.2 Setting Connected Development Board	345
9.4.3 Compiling and Downloading Programs to the Development Board	348
9.5 LED Driver	350
9.5.1 Learning the hardware	350
9.5.2 Writing LED Streaming Driver	351
9.5.3 Adding the LED Driver to the BSP and Compiling	356
9.5.4 Writing and Compiling LED Application	358
9.5.5 Adding the LED testing program to the Kernel, and create a desktop shortcut	361
Conclusion:	362
Appendix I Qt Embedded Graphic Development	
Appendix II Refreshing System in the Command Line of BIOS	
Appendix III Burning BIOS with SJF2440	387
-	

Chapter 1 Introduction to MINI2440 development board

1.1 Brief introduction

The MINI2440 is an efficient ARM9 development board with a reasonable price, it characterizes simple method and high performance-price ratio. Based on the Samsung S3C2440 microprocessor, it embodies professional stable CPU core power source chip and reset chip to ensure the stability of the system operation. The PCB on the MINI2440 board is designed to be 4-layers board, adopting the ENIG technology and professional equal-length wiring to ensure the completeness of the signals of the key signal wire; and manufactured and released under stringent quality control plans. With the help of this detailed manual, users are supposed to become proficient in the development process of embedded Linux and WinCE operating system, they are supposed to get the foundation, so long as they have obtained the basic and necessary knowledge about the C language, in two weeks.

1.1.1 physical appearance of MINI2440

1.1.2 Hardware Features

- CPU
 - * Samsung S3C2440A, 400MHz Main frequency, 533Mhz Peak Frequency
- SDRAM
 - * 64M SDRAM on board
 - * 32 bit data bus
 - * SDRAM clock frequency can reach up to 100MHz
- Flash Memory
 - * 64M Nand Flash on board, nonvolatile
 - * 2M Nor Flash on board, nonvolatile
- LCD control
 - STN LCD Displays:

* A 4-wire resistive touch screen interface is integrated on the board, via which the 4-wire resistive touch screen can be connected.

* Supports 3 types of LCD panels: 4-bit dual scan, 4-bit single scan, and 8-bit single scan display type

- * Supports the monochrome, 4 gray levels, and 16 gray levels
- * Supports 256 colors and 4096 colors for color STN LCD panel
- * Supports multiple screen size
- Typical actual screen size:640 x 480, 320 x 240, 160 x 160, and others

TFT LCD Displays:

- * Supports 1, 2, 4 or 8-bpp (bit per pixel) palletized color displays for TFT
- * Supports 16, 24-bpp non-palletized true-color displays for color TFT
- * Supports maximum 16M color TFT at 24bit per pixel mode
- * Supports multiple screen size

Typical actual screen size: 1024x768 640 x 480, 320 x 240, 160 x 160, and others

- Interfaces and Resources
 - * One 10MM Ethernet RJ-45 interface (DM9000 ethernet chip adopted)
 - * 3 serial ports
 - * One USB Host
 - * One USB Slave (B-type interface)
 - * One SD card interface

- * One stereo audio output interface, one MIC interface
- * One 10pin (2.0mm space) JTAG interface
- * 4 user LEDs
- * 6 user buttons
- * One PWM control buzzer
- * One adjustable resistance, used for AD conversion test
- * One I2C bus AT24C08 chip, used for I2C bus test
- * One 20pin (2.0mm space) camera interface
- * RTC battery on board
- * Power supply interface, with switch and indicator
- System clock source
 - * 12M passive crystal
- RTC
 - * Internal real time clock, battery backed
- Expansion interfaces
 - * One 34pin 2.0mm GPIO interface
 - * One 40pin 2.0mm system bus interface
- Dimension
 - * 100 x 100 (mm)
- OS supported
 - * Linux 2.6.13
 - * WindowsCE.NET 5.0

1.1.3 CD Contents

- 1. ADS1.2 installer
- 2. H-JTAG burning & debugging tool
- 3. SJF2440 (Flash Burning tool for Windows)
- 4. Jflash-2440 (Nand Flash Burning tool for Linux, source code provided)
- 5. Serial tools CRT, dnw
- 6. A software that used to transform picture to C language array
- 7. USB driver (installed and used under Windows XP/2000)
- 8. vivi source code, the bootloader used for Linux
- 9. Simplest LED test program

- 10. Test program 2440test, containing the project files of ADS1.20, source code provided, used for the tests for: interrupt mode button test, RTC test, AD conversion test, IIS audio playing wav test, IIS audio recording test, touch screen test, I2C bus reading/writing AT24C08 test, Samsung 3.5" LCD, 640x480 TFT test, etc..
- 11. WindowsCE BSP and example project files
- 12. Linux development tools and kernel source code package
 - arm-linux-gcc-3.3.2 used for compiling Qtopia
 - arm-linux-gcc-3.4.1 used for compiling kernel
 - arm-linux-gcc-2.95.3 used for compiling vivi
 - mkyaffsimage yaffs filesystem image maker

- linux-2.6.13 for MINI2440 kernel source code, including DM9000 driver, TFT LCD driver, audio card driver, touch screen driver, YAFFS source code, SD card driver, RTC driver, expansion serial port driver, USB camera driver, USB mouse, keyboard, U-disk driver.

- 13. Embedded graphic interface Qtopia source code, embedded browser source code
- 14. Schematics (Protel99SE/PDF format)
- 15. Users Manual (pdf)

1.2 Hardware Resources

1.2.1 Jumpers

There is only one jumper (J2) on the MINI2440 development board, it is used to select the input voltage of the LCD driver board.

1.2.2 Interfaces

The layout of the interfaces on the MINI2440 are shown in the picture below:

1.2.2.1 Address Space Layout and Chip Selection signal definition

The S3C2440 CPU chip supports two kinds of boot modes: booting at the Nandflash (which is used by the MINI2440) and booting at the Nor flash. The allocation of the storage space of the chip selections is different in the two boot modes. As we see in the picture below:

In the picture above, the left part shows the storage allocation of the nGCS0 chip selection in the Nor Flash boot mode. While the right part of the picture shows the storage allocation in the NandFlash boot mode.

NOTE: the SFR Area refers to SFR (special function registry) address control

The following illustrates the device address space layout and its chip Selection signal definition.

Before going into the device address illustration, we must know that the nGCS0 chip selection maps to different devices in different boot modes. We can see from the picture above that:

- 1. In the NAND Flash boot mode, the internal 4K Bytes BootSram is mapped to the space of the nGCS0 chip selection.
- 2. Under the Nor Flash boot mode, the Nor Flash, i.e., the external storage that is linked to the

nGCS0, is mapped to the space of the nGCS0 chip selection.

The address space of the SDRAM is: $0x3000000 \sim 0x34000000$

1.2.2.2 SDRAM

Two 32MB SDRAM chip (model: HY57561620FTP) are utilized on the MINI2440. The two chips are joined up in parallel to produce 32bit data bus width so as to increase access speed, both of them use the nGCS6 as the chip selection, and thus, according to the CHAPTER 5-2 in the manual of the S3C2440, the physical offset of these two SDRAM chips are determined to be 0x30000000.

The picture below shows the schematics of the SDRAM chips:

1.2.2.3 Flash Storage

Two Flash storage chips are used on the MINI2440. One is 2MB Nor Flash (Model: SST39VF1601), the other is 64MB Nand Flash (Model: K9F1208). Both of these two storages can be used as boot source, i.e., the system can boot from either Nor Flash or Nand Flash. by switching the switch S2, we can select either Nor Flash or Nand Flash as boot source. Though the Nor Flash is not necessary for the most final products, we keep it on the MINI2440 for users' development and learning.

There is no address wire in the Nand Flash, it is connected to the CPU via a special controller, with a data bus width of 8-bit. A 8-bit data bus width does not mean a slow access speed, in fact

most of the u-disks and SD cards are made of Nand Flash chips.

Referring to the schematic below, we can see that the Nor Flash is connected to the CPU via 22 address wires (A1-A22) and 16 data wires. We can see that the address starts from A1, which determines that the minimum write/read unit is 2 byte, therefore, the Nor Flash supported by MINI2440 maximumly 8Mbyte. In fact, on the MINI2440, only A1-A20 are used, therefore the pins on the SST29V1601 which are connected to A21 and A22 are floating.

1.2.2.4 Power System

The power system on the MINI2440 is quit simple, a 5V power supply is used directly, through several voltage regulators the 5V power supply is reduced to 3.3V, 1.8V and 1.25V.

Since the MINI2440 is not specially designed for hand-held mobile devices, it does not embody complete power management circuit. The power supply is controlled by the power switch S1.

1.8V Power Generation

For the convenience of connecting other power supply, another power socket (CON8) has been implemented on the MINI2440. The socket can be found beside the TTL serial ports, it is a white 2.0mm 4 pin connector, the first and the last pins are 5V, and the two pins between the 5V are GND

1.2.2.5 Reset Circuit

A professional reset chip MAX811 is used on the MINI2440 to realise low level reset:

1.2.2.6 User LED

LED is a kind of commonly used state indicator on development boards. On the MINI2440 there are totally 4 user programmable LEDs, which are directly connected to the GPIO of the CPU and enabled (lighten) by low power level. The resources occupied by the LEDs are listed in the table below:

	LED1	LED2	LED3	LED4
GPIO	GPB5	GPB6	GPB7	GPB8
Multiplexed as	nXBACK	nXREQ	nXDACK1	nDREQ1
Name in the schematic	nLED_1	nLED_2	nLED_3	nLED_4

1.2.2.7 User Keys

There are totally 6 user keys on the MINI2440, which are directly led out from the CPU interrupt pins and triggered by low power level. These pins can also be multiplexed as GPIO or interfaces with special function. In order to make them usable for other functions, these pins are also led out via the connector CON12. The definition of the 6 user keys and the CON12 are shown in the table below:

Hiteg							
	K1	K2	K3	K4	K5	K6	
Related interrupt	EINT8	EINT11	EINT13	EINT14	EINT15	EINT19	
Multiplexed GPIO	GPG0	GPG3	GPG5	GPG6	GPG7	GPG11	
Special function	None	nSS1	SPIMISO1	SPIMOSI1	SPICLK1	TCLK1	
Related CON12 pin	CON12.1	CON12.2	CON12.3	CON12.4	CON12.5	CON12.6	

Note: CON12.7 is used for 3.3V power supply and CON12.8 is GND

1.2.2.8 A/D Output

On the MINI2440, totally there are 4 A/D conversion channel that can be led out, which are located on the CON4-GPIO interface. For the convenience of testing ADC, the AIN0 has been connected to the adjustable resistance W1. The schematic is as shown below:

1.2.2.9 PWM

The buzzer on the MINI2440 is used for testing PWM. The schematic is shown as below. The

GPB0 can be set as PWM output by software.

1.2.2.10 Serial Ports

The S3C2440 microcontroller itself has 3 serial ports in total, namely UART0, UART1, UART2. The UART0 and UART1 can be combined as a full-functional serial port. In most practices, only three simply serial port functions are used, i.e., send (TXD) and receive (RXD), they are respectively related to the the connectors CON1, CON2, and CON3. CON1, CON2, and CON3 are three TTL serial ports directly led out from the CPU. For the convenience of users, UART0 has been converted to RS232 and led to COM0.

1.2.2.11 USB Interfaces

There are two USB interfaces on the MINI2440. One is USB Host interface and the other is USB Device interface. The USB Host is the same with the USB interfaces on a PC, it can be used to connect USB camera, USB keyboard, USB mouse, U-disk and etc.; The USB Device interface is usually used for downloading programs to the MINI2440 or WinCE synchronization. For the convenience of controlling the communication between the USB Device and PC, a signal USB_EN is set as shown in the picture below, which uses the CPU resource GPC5.

1.2.2.12 LCD Interface

The LCD Interface on the MINI2440 is a 41Pin 0.5mm white socket, which contains most of the commonly used LCD controlling signals (line-field scan, clock, enable, etc..) and complete RGB data signals (the RGB output is 8:8:8, supports maximumly 16MP LCD). The PWM output (GPB1 can be configured by register as PWM) and reset signal (nRESET) are led out for the

convenience of testing. The LCD_PWR is the back light controlling signal.

The pins 37, 38, 39, 40 are the interface for the 4-wire touch screen, through which the touch screen can be connected directly.

The jumper J2 in the picture below is the LCD driver board power voltage selector. Currently all of our driver boards are supplied with 5V power supply.

1.2.2.13 EEPROM

On the MINI2440, a 256 byte EEPROM chip AT24C08 is connected to the I2C signal pins on the CPU, it is mainly used for testing the I2C bus. No specific parameters are stored in the EEPROM.

1.2.2.14 Ethernet Interface

D

06

000EP

275 MM1146

An 10/100M self-adapting ethernet chip DM9000 and a ethernet connector RJ45 are used on the MINI2440. The RJ45 connector contains a coupled inductor, therefore we do not need a network transformer but a simple ethernet cable to connect the MINI2440 development board to a router or switch.

1.2.2.15 Audio Interface

The S3C2440 micro controller embodies an I2S bus interface, to which we can directly connect a 8/16 bit stereo CODEC. On the MINI2440, an I2S bus-based UDA1341 audio chip is used as stereo CODEC to realise audio codec system. The initialization and configuration of the registries in the UDA1341 chip are controlled by the L3-bus. On the MINI2440, the ports GPB2, GPB3, GPB4 on the CPU are taken to simulate the L3MODE, L3DATA,L3CLOCK signals of the L3-bus, they are no longer used after initializing the UDA1341 chip, therefore these three wires can also be simulated by using a simple single chip.

A 3.5mm stereo hole connector is used on the MINI2440 as audio output interface. The audio input system consists of two channels: one MIC on the board and one 2.0mm CON10 connector. The drivers of these two channels are different from each other, at this moment the MIC is not working yet, only the CON10 connector can be used for recording. Anyway, sooner or later we are going to get the MIC drived and usable.

1.2.2.16 JTAG Interface

A JTAG interface is essential in a bare-mental environment, where the serial ports and USB

interfaces are not drived yet. In bare-mental environment we can take the JTAG interface to download the first program, i.e., boot loader, to the development board.

Moreover, the most common usage of a JTAG interface is for single step debugging. Most of the common emulators (debuggers) likte JLINK, ULINK and etc take the JTAG interface as the connector to the board.

A standard JTAG interface consists of six wires, namely TMS, TCK, TDI, TDO (respetively, mode selection, clock, data in, and data out), power and GND. For the convenience of debugging, most of the debuggers also provide a reset signal.

Therefore, a standard JTAG interface is an interface that contains the JTAG signals mentioned above, but not a modal 20-pin or 10-pin connector. No matter how many pins a JTAG interface embodies, whatever its shape is, so long as it contains all of the JTAG signals, this interface can be recognized as JTAG interface. On the MINI2440 we provide a 10 pin JTAG interface which contains complete standard JTAG signals, the definition of the 10 pins are shown in the picture below.

P.S.: For Linux or WinCE-dedicated developers, the JTAG interface is nonesense and useless, as most of the development boards always provide complete BSP, which contains the most commonly used serial ports, ethernet ports and USB interfaces. When the system is loaded with working Linux or WinCE operating system, users can debug with the functions provided by these advanced operating systems without JTAG interface. Due to the complex structure and plentiful interfaces of the operating systems, single step debugging is nonesense but just like searching for a needle in a haystack. Take a PC for instance, you've never seen a developer debugging Windows XP or Linux driver for the PCI interface with a simulator connected to the main board, do you? We have seen the phrase "Driver PORTING" a lot, as most developers do not develop drivers all by themselves, but by porting others' drivers.

JTAG interface is only useful for those bare-mental system or simple OS (uCos2 for instance) developers. On most development boards, the boot loader or BIOS is already installed as a complete system, therefore single step debugging is not needed.

1.2.3.17 GPIO

"GPIO" is the abbreviation of General Purpose Input Output interfaces. The MINI2440 embodies a 2.0mm 34-pin GPIO interface, named as CON4 shown in the picture below.

In fact, the CON4 connector contains not only some unused GPIO pins, but alsosome other CPU pins such as AD0-AIN3, CLKOUT, etc.. The interfaces like SPI, I2C, GPB0 and GPB1, though named as special function interface as you see in the picture, are actually GPIOs too, their functions can be changed by setting the CPU registry.

	CON4			12
VDD5V	1 2	VDD33V	- T	
GND	2 4	nRESET		
AINO	5 4	AIN1	2.1	
AINZ	2 D	AIN3	-	
EINTO	ó 10	EINT1		
EINT2	11 12	EINT3		
EINT4	12 14	EINT5		
EINTG	15 14	EINTS		
EINT9	17 10	EINT11	3	
EINT13	10 20	EINT14	1	
EINT15	21 22	EINT17	5	
EINT18	21 22	EINT19		
SPIMISO	25 24	SPIMOSI		•••
SPICLK	27 20	1185_8PI		
IZCSCL	20 20	IZCSDA		
GPB0	29 30	GP81		
CLKOUTO	22 24	CLKOUT1	10	
	35 34	P	D	
		HEADER 17X2		

Detailed interface resources are shown in the table below:

Pin	Name	Description	Pin	Name	description
1	VDD5V	5v power (in/out)	2	VDD33V	3.3v power (output)

Hiteg						
3	GND	Ground	4	NRESET	Reset signal (output)	
5	AIN0	AD input channel 0	6	AIN1	AD input channel 1	
7	AIN2	AD input channel 2	8	AIN0	AD input channel 3	
9	EINT0	EINT0/GPF0	10	EINT1	EINT1/GPF1	
11	EINT2	EINT2/GPF2	12	EINT3	EINT3/GPF3	
13	EINT4	EINT4/GPF4	14	EINT5	EINT5/GPF5	
15	EINT6	EINT6/GPF6	16	EINT8	EINT8/GPG0	
17	EINT9	EINT9/GPG1	18	EINT11	EINT11/GPG3/nSS1	
19	EINT13	EINT13/GPG5/SPIMISO1	20	EINT14	EINT14/GPG6/SPIMOSI1	
21	EINT15	EINT15/GPG7/SPICLK1	22	EINT17	EINT17/GPG9/nRST1	
23	EINT18	EINT18/GPG10/nCTS1	24	EINT19	EINT19/GPG11	
25	SPIMISO	SPIMISO /GPE11	26	SPIMOSI	SPIMOSI /EINT14/GPG6	
27	SPICLK	SPICLK /GPE13	28	nSS_SPI	nSS_SPI /EINT10/GPG2	
29	I2CSCL	I2CSCL/GPE14	30	I2CSDA	I2CSDA/GPE15	
31	GPB0	TOUT0/ GPB0	32	GPB1	TOUT1/ GPB1	
33	CLKOUT0	CLKOUT0/GPH9	34	CLKOUT1	CLKOUT1/GPH10	

1.2.3.18 CMOS Camera Interface

The CMOS camera interface on the MINI2440 is a 2.0mm 10pin socket, with which users can directly use the 1.3 Mpixels CMOS camera module on our website. In fact, the CMOS camera module does not contain any circuit but a simple ZT130G2 camera module. The definition of the pins on the CMOS camera interface is shown in the schematic below.

NOTE: The CMOS camera interface is actually a multiplexing port, by setting corresponding registries we can use it as GPIO. The table below shows the multiplexing GPIO function of the pins:

Pin	Name	Multiplexing function	Pin	Name	Multiplexing function
1	I2CSDA	GPE15	2	I2CSCL	GPE14
3	EINT20	GPG12	4	CAMRST	GPJ12
5	CAMCLK	GPJ11	6	CAM_HREF	GPJ10
7	CAM_VSYNC	GPJ9	8	CAM_PCLK	GPJ8
9	CAMDATA7	GPJ7	10	CAMDATA6	GPJ6
11	CAMDATA5	GPJ5	12	CAMDATA4	GPJ4
13	CAMDATA3	GPJ3	14	CAMDATA2	GPJ2
15	CAMDATA1	GPJ1	16	CAMDATA0	GPJ0
17	VDD33V	3.3V power	18	VDD_CAM	VDD_CAM
19	VDD18V	1.8V power	20	GND	Ground

1.2.3.19 System Bus Interface

The system bus, named as CON5 on the MINI2440, contains 16 data wires (D0-D15), 8 address wires (A0-A6, A24) and some controlling signal wires (chip selection, R/W, reset, etc.). The CON5 connector can also supply 5V power to external devices. The definition of the pins on the system bus is shown in the table below:

	CON5		11 1 2
VDD5V	1 2	GND	
EINT17		EINT18	*** * * *
EINT3	5 4	EINT9	
nGCS1	о С	nGCS2	· · ·
nGCS3	/ 8	nGC85	
LnOE	9 10	LuWE	
nWAIT	11 12	nRESET	
nXDACK0	13 14	INCOREQ0	ī) · ·
LADDRO	15 16	LADDR1	
LADDR2	17 18	LADDR3	
LADDR4	19 20	LADDR5	
	21 22	LADDR24	
	23 24	LDATA1	
LDATA2	25 26	LDATA3	- · · · · ·
	27 28	LDATAS	
	29 30	LDATA7	8
	31 32	LDATAS	
	33 34	LDATA11	1 1
	35 36	D LDATA13	1
	37 38	D LDATA15	1 1
0	39 40	p	1
	HEADER 202	0	

Pin	Name	Description	Pin	Name	Description
1	VDD5V	5V power	2	GND	Ground
3	EINT17	Interrupt 17 (input)	4	EINT18	Interrupt 18 (input)
5	EINT3	Interrupt 3 (input)	6	EINT9	Interrupt 9 (input)
7	nGCS1	Chip selection 1 phisicall address 0x08000000	8	nGCS2	Chip selection 2 phisicall address 0x10000000
9	nGCS3	Chip selection 3 phisicall address 0x18000000	10	nGCS5	Chip selection 5 phisicall address 0x28000000

Hiteg					
11	LnOE	Read-enable signal	12	LnWE	Write-enable signal
13	nWAIT	Wait	14	nRESET	Reset
15	nXDACK0	nXDACK0	16	nXDREQ0	nXDREQ0
17	LADDR0	Address 0	18	LADDR1	Address 1
19	LADDR2	Address 2	20	LADDR3	Address 3
21	LADDR4	Address 4	22	LADDR5	Address 5
23	LADDR6	Address 6	24	LADDR7	Address 7
25	LDATA0	Data 0	26	LDATA1	Data 1
27	LDATA2	Data 2	28	LDATA3	Data 3
29	LDATA4	Data 4	30	LDATA5	Data 5
31	LDATA6	Data 6	32	LDATA7	Data 7
33	LDATA8	Data 8	34	LDATA9	Data 9
35	LDATA10	Data 10	36	LDATA11	Data 11
37	LDATA12	Data 12	38	LDATA13	Data 13
39	LDATA14	Data 14	40	LDATA15	Data 15

1.3 Linux Features

- Version
 - Linux2.6.13
- Supported Filesystems
 - yaffs (readable & writable filesystem, recommended)
- cramfs (compressed read only filesystem, recommended only when online update is not needed.)

leeueu.)

- Ext2
- Fat32
- NFS (Network filesystem, recommended when developing drivers and applications)
- Fundamental Drivers
 - 3 serial port standard driver
 - DM9000 driver
 - Sound driver
 - RTC driver
 - User LED driver
 - USB Host driver
 - Common LCD driver
 - Touch screen driver
 - USB camera driver
 - USB mouse, keyboard, U-disk, mobile disk driver
 - SD card driver, supporting SD memory up to 2G
- Linux applications and service programs
 - busybox 1.2.0 (Linux utilities, contains common Linux instructions)
 - Telnet, Ftp, inetd (telnet tools and services)
 - boa (web server)
 - madplay (console oriented mp3 player)
 - snapshot (console oriented image capture software)
 - ishow (console oriented image browser)
 - ifconfig, ping, route (common network tool commands)
- Embedded graphic system (Provided as source code)
 - Qt/Embedded

1.4 WindowsCE Features

- Version
 - WindowsCE.net 5.0
- Features
 - DM9000 Ethernet card driver source code
 - USB mouse, keyboard, U-disk, mobile disk driver
 - Audio driver
 - SD card driver
 - RTC
 - Registry Saving
 - Saving data to spare Flash space in the event of power down
 - Revolving screen
- Default system features
 - XP style interface
 - Windows Media Player 9.0 (supporting mp3, mpeg2, mpeg4, wmv, wav, etc)
 - Superplayer (similar to the Storm Codec in Windows)
 - Image browser, wordpad
 - IE6 browser
 - ftp, telnet, httpd server
 - Serial port debugging assistant